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FLUID MECHANICS OF DISTILLATION TRAYS (I): 

ONE-DIMENSIONAL FLOWS? 
DEPTH-AVERAGED THEORY AND 

Fred K. Wohlhutera Osman A. Basaranb 
Department of Energy Research Section 

Chemical Engineering Chemical Technology Division 
University of Tennessee Oak Ridge National Laboratory 

Knoxville, TN 37998 Oak Ridge, TN 37831-0224 

George M. Harriott 
Air Products and Chemicals, Inc. 

7201 Hamilton Boulevard 
Allentown, PA 18195 

ABSTRACT 

Rigorous design of a distillation column requires a better fundamental 
understanding of the fluid mechanics of bubble formation and global flows 
on trays than that currently available. To progress beyond the empirical- 
or correlation-based state of understanding that currently exists, a theoret- 
ical and computational framework is described here that is based on reduc- 
ing the governing set of three-dimensional conservation equations to a two- 
dimensional set by averaging them across the depth of the fluid film flowing 
across the tray. In contrast to related previous works, realistic boundary 
conditions to the flow problem are provided in this paper by solving simul- 
taneously for the flow on the tray and its inlet and outlet downcomers. In 
this first of a series of papers, attention is focused on situations in which the 
flow is invariant in the direction perpendicular to the main flow direction. 
By means of such a set of one-dimensional, depth-averaged equations, pre- 
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1220 WOHLHUTER, BASARAN, AND HARRIOTT 

dictions are made in several interesting and practically important situations 
in which the flow is either steady or time dependent. 

INTRODUCTION 

Separation processes account for 6% of the energy usage per annum 

in the United States (1). Among the various separation processes, distilla- 

tion is the dominant separation process used in the petroleum and chemical 

industries (1). Moreover, distillation is more energy intensive than alter- 

native means of separation and consumes 50% of the total energy used in 

separations (1). Massive scale of use plus energy intensiveness implies that  

small improvements can have significant impacts. 

Between 1950 and the present, thermodynamic, or vapor-liquid equi- 

libria, considerations and equilibrium stage models have dominated stud- 

ies of distillation (see ref. 2) .  More recently, nonequilibrium stage models 

and accounting for mass-transfer resistances have been gaining popularity. 

However, inspection of recent treatises on distillation (see ref. 3) and con- 

versations with industrial practitioners reveal that understanding of fluid 

mechanics - a subject that is equal in importance to thermodynamics in ra- 

tional design of columns - has not progressed beyond the correlation stage. 

The goal of this research is to overcome this severely limiting aspect of the 

current black-boz approach to distillation. 

Eighty to eighty five percent of the distillation columns in practice 

are tray columns and such columns continue to be built despite advances 

in packed column design (4). In this paper, attention is focused on flows 

in tray columns. Figure 1 shows cross-sectional and top views of typical 

tray columns. As shown in Figure 1 and elsewhere (3) ,  there are two main 

problems of interest in developing a better understanding of hydraulics of 
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FLUID MECHANICS OF DISTILLATION TRAYS. I 1221 

SIDE VIEW O f  A TYPICAL TOP VIEW OF TYPICAL TRAYS 
TRAY COLUMN 

&;,H 
THICKNESS LOW RUPTURE? 

@ 
*PRESENCE OF EDDIES OR STAGNATION ZONES 

NONUNIFORMITY IN FILM THICKNESS OR FROTH HEIGHT 
*DYNAMICS OF BUBBLES IN A SHEAR fLOW 

FIGURE 1. Schematic of opportunities for fundamental research in fluid 
mechanics of distillation columns: microhydrodynamics of bubbles, free 
surface flows of films and froths, and formation and growth of zones of 
fluid recirculation. 

tray columns: (a) microscopic fluid mechanics of bubbles and (b) global or 

macroscopic flows on trays. The former problem is outside the scope of the 

present paper. An example of a study directed at developing a fundamental 

understanding of that problem can be found in (5), where tools from bifurca- 

tion theory are used to analyze shapes and stability of supported bubbles in 

a simple shear flow. The present paper is concerned with the latter problem. 

Thus, the primary goal of this paper is to develop a theoretical and compu- 

tational framework that is capable of determining global flows on distillation 

trays and their inlet and outlet downcomers. 

To our knowledge, there has been two papers (6, 7) to date which 

have attempted to model the flow across a distillation tray. However, these 

previous works suffer from two drawbacks. First, the algorithms developed in 
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1222 WOHLHUTER, BASARAN, AND HARRIOTT 

(6) and (7) do not converge over certain portions of the parameter space, e.g. 

with respect to Reynolds number, that  are typical of practical applications. 

Second, they only solve for the flow on a tray. Thus, by neglecting the 

downcomers, they assign physically unrealistic inlet and outlet boundary 

conditions to the flow problem on the tray. 

As in (6) and (7),  the method developed here is based on reduc- 

ing the governing set of three-dimensional conservation equations to  a two- 

dimensional set by averaging them across the depth of the fluid film flowing 

across the tray. However, in contrast to (4, 5 ) ,  realistic boundary conditions 

to the flow problem are provided in this paper by solving simultaneously for 

the flow on the tray and its inlet and outlet downcomers. In this first of a 

series of papers, attention is focused on situations in which the flow is in- 

variant in the direction perpendicular to the main flow direction. By means 

of such a set of one-dimensional, depth-averaged equations, predictions are 

made in several interesting and practically important situations in which the 

flow is either steady or time dependent. 

THEORY AND COMPUTATIONAL ANALYSIS 

Isothermal flow of a fluid on a distillation tray and its downcomers 

is governed by the continuity and momentum equations: 

(2) 
av_ 
at 

p ( -  + v . V v )  = - V p + V . z + p g ,  

where y is the velocity vector, p is density, t is time, p is the pressure, 7 is 

the stress tensor, and g - is the gravitational acceleration. The density p as 

- 
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FLUID MECHANICS OF DISTILLATION TRAYS. I 1223 

well as the viscosity p of the fluid are taken to be constants throughout this 

paper. 

Because the local froth height h is much less than the lateral tray 

dimensions, say L, as depicted in Figure 2, the governing three-dimensional 

equations, Eqs. (1) and (2), can be averaged across the film depth to  elim- 

inate terms involving the vertical component of the velocity and derivatives 

with respect to the vertical direction, to give “averaged” two-dimensional 

equations (8). The resulting system of depth-averaged equations are akin to  

the celebrated shallow-water equations (9). If the asymptotic thickness of 

the film in the inlet downcomer sufficiently far upstream of the flat portion 

of the tray is h,, then the condition for shallow flow is that 6 = h,/L << 1, 

as shown in Figure 2. 

In the remainder of this paper, attention is focused on situations in 

which the flow is invariant in the direction perpendicular to the main flow 

direction along the tray, viz. the y-direction in Figure 2. In this case, the 

flow is determined by three dimensionless groups: a Reynolds number, Re, 

a capillary number, Ca, and the dimensionless asymptotic film thickness, E. 

As usual, Re measures the relative importance of inertial forces to viscous 

forces and Ca measures the relative importance of viscous forces to surface 

tension forces. 

The resulting one-dimensional, depth-averaged, shallow flow equa- 

tions are nonlinear. The steady version of these equations is solved by 

Galerkin/finite element analysis (10). The transient version of these equa- 

tions is solved by a method of lines with a finite element discretization in 

space and a finite difference discretization in time. To account for rapid vari- 

ations in film height along the tray, the locations of mesh or nodal points are 
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SCALES 

LENGTH: & = h,/L 

n u = PSh,2/P 

3 
3 

LATERAL - L 

- 9 NORMAL - h, 

VELOCITY: LATERAL - " 
NORMAL - E U  

(I: SURFACE TENSION 

SHALLOW FLOW1 

FIGURE 2. Problem statement: characteristic scales and conditions for 
shallow flow. 

adaptively determined by means of a moving finite element algorithm due to 

Benner e t  al. (11). 

RESULTS 

Figure 3 shows the variation of the film height on the tray and its inlet 

and outlet downcorners, and also the locations of mesh points as determined 

adaptively by the moving element algorithm for the situation in which the 

flow is steady, Re = 700, and c = 0.1. Figure 3 makes plain that the nodes 

are deployed where they are most needed, i.e. at the location on the tray 

where the froth height is varying most rapidly. 
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FLUID MECHANICS OF DISTILLATION TRAYS. I 1225 

FIGURE 3. Locations of mesh points or nodes determined by the mov- 
ing finite element algorithm. Here Re = 700, Ca = 0, and E = 0.1. 

Figure 4 shows the evolution of film profiles with the dimensionless 

asymptotic film thickness c when the flow is steady and Re = 1,000. The 

situation in which E = 0.1 is readily understood if one realizes that as the fluid 

traverses the tray, it is decelerated by the action of tray friction. Thus, the 

film must rise as the tray is traversed to conserve mass. As c decreases, the 

importance of frictional forces increases, which causes the location on the tray 

where the froth height is a maximum to shift toward the inlet downcomer. 

When the fluid that exits the inlet downcomer and enters the flat portion of 

the tray suffers a sudden increase in film thickness, the film profile closely 

resembles the celebrated hydraulic jump (12). 

Rosen and Krylov (13), for example, have reported a large effect on 

column efficiency when trays are not perfectly flat. Figure 5 shows the effect 
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1226 WOHLHUTER, BASARAN, AND HARRIOTT 

FIGURE 4. Effect of asymptotic film thickness c on film profiles. Here 
Re = 1,000 and C a  = 0. 

FIGURE 5. Effect of tilting a tray from the horizontal on film profiles: 
(a) B = Oo, horizontal tray; (b) 0 = So, downward-tilted tray; and (c) 
B = -4.75', upward-tilted tray. Here Re = 1,000, C a  = 0, and E = 0.1. 
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FLUID MECHANICS OF DISTILLATION TRAYS. I 1227 

of tilting a tray from the horizontal. Evidently, whereas tilting a tray slightly 

downward has little effect on the height profile on the tray, tilting it upward 

by about the same amount can drastically change the height profile on it. 

Understanding the effects of process upsets on flows in tray columns is 

sometimes equally important as understanding steady flows. Figure 6 shows 

the response of the froth on a level tray when the column is subjected to 

a step change in liquid flow rate by decreasing the Reynolds number from 

1,000 to 700. Whereas the position on the tray where the froth height is 

a maximum is located near the outlet downcomer when Re = 1,000, it is 

located near the inlet downcomer when Re = 700. Remarkably, the froth 

height smoothly changes from the profile that it has when Re = 1,000 to the 

profile that  is has when Re = 700 without oscillations. This fact stands in 

direct contrast to a simple leveling flow (14) where there is no net flow from 

left to right and the domain is blocked at the locations where the tray meets 

the downcomers. 

Figure 7 shows the effect of sinusoidally perturbing the liquid flow 

rate on the tray by varying Re sinusoidally in time. The consequence of such 

transient forcing of the flow rate is generation of capillary waves on the film 

surface that travel between the intlet and outlet downcomers. 

CONCLUSIONS 

According to the foregoing results, the one-dimensional set 

of depth-averaged equations can provide valuable insights into various situa- 

tions that are encountered in practical applications, e.g. hydraulic jumps on 

trays that are observed in experiments and consequences of installing trays 
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m I = 1.m 

FIGURE 6. Dynamic response of a film to a step change in flow rate. 
At time t = 0, the Reynolds number is changed from 1,000 to 700. Here 
C a  = 0 and E = 0.1. This figure continues onto the next page. 
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t = 2.004 

1229 

7 t 1.204 

11 I = 2.804 

"71 t = 0.404 

7 t = 3.604 

I I I  I 

I 

m t = 36 404 jl I =  37.204 

FIGURE 7. Dynamic response of a film to periodic forcing of the flow 
rate. For times t > 0, the Reynolds number is varied sinusoidally as 
Re = 1,000 t 300sin(st/4). Here Ca = 0 and c = 0.1. This figure 
continues onto the next page. 
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1230 WOHLHUTER, BASARAN, AND HARRIOTT 

that  are not perfectly level. Moreover, the finite element-based methodolo- 

gies developed in this paper do not suffer from the limitations encountered by 

numerical methods advanced by previous investigators. By way of example, 

whereas the calculations of McDermott ct  al. (6) were restricted to Reynolds 

numbers less than 0.3, the present method is capable of determining the flow 

on a tray at any value of Re. 

Understanding of variations in froth height caused by actual tray 

shapes and other fluid mechanical details that  can limit tray performance, 

such as formation of zones of fluid recirculation, are also important. Nu- 

merical prediction of flows on some practically important types of trays is 

considered in the sequel to this paper (15). 

Further extensions of the single-phase fluid mechanical models pre- 

sented here and in (15) are also needed to incorporate multi-phase, hole 

activity, and mass transfer effects, among others. Prado and Fair (16) have 

already considered these realistic complications in the modeling of the per- 

formance of distillation trays albeit taking a more empirical approach than 

those presented here and in (15) for describing the fluid mechanics. 
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